
"Low Cost Methodologies to Analyze and Correct Abnormal Production Declines in Stripper Gas Wells"

James Engineering, Inc.

Candidate Selection Methodology

- Develop 40 yr. Production type decline curve for formation
- Compare type curve to 40 yr production curves for study wells
- Identify wells exhibiting abnormal decline
- Identify cause of abnormal decline
- Identify remediation needed to return well to normal production

	Stripper Gas Well		
	Abnormal Production Declin	e	
Triage Sheet			
	Analysis		
_ease Na			
	ntification Number		
Artificial	Lift Mechanism		
01	Dhana Ar Islandifu tha Duahlam	D	A - 45
Step	Phase 1: Identify the Problem	Response	Action
1	Identified Abnormal Production Decline from Priority Report	Y	Go to Step 2
2	Review Production Decline Curve and Forecast	Y	Go to Step 3
3	Check with pumper to verify problem still exists	Y	Go to Step 4
4	Check for Metering Inaccuracy	Y	Go to Step 5
5	Check for Integrity of Gas Gathering System	Y	Go to Step 6
	Phase 2: Measure the Problem	Response	Action
6	Check for change in Sales Line Pressure	Y	Go to Step 7
7	Check for change in Fluid Production	Y	Go to Step 8
8	Enter current Flowing Bottom Hole Pressure	800	Go to Step 9
9	Enter current Shut In Bottom Hole Pressure	1000	Go to Step 10
10	Enter current Producing Rate, MCFD	10	Go to Step 11
11	Maximum Producing Rate, MCFD	30	Calculated
12	Is well producing at Optimum Production Rate	У	Go to Step 17
13	Is well on artificial lift	Y	Go to Step 15
	Phase 3: Solve the Problem		
14	Go to Swab Well Analysis Form		
15	Go to Artificial Lift Analysis Form, TPL, CPL, or PJ		
16	Go to Compression Analysis Form		
17	Go to Artificial Lift Determination Form		
18	Shut in Well for Bottom Hole Pressure Analysis		
19	Shut in Well to Plug and Abandon or Sell		